Given: e=12,S(1,2) and equation of directrix is 3x+4y−5=0
Let a point P(x,y), such that
SP=e⋅PM, where PM is perpendicular distance from P(x,y) to directrix
⇒√(x−1)2+(y−2)2=12×∣∣
∣∣3x+4y−5√32+42∣∣
∣∣
⇒√(x−1)2+(y−2)2=110|3x+4y−5|
Squaring on both sides, we get
⇒(x−1)2+(y−2)2=1100(3x+4y−5)2
⇒100(x2−2x+1+y2−4y+4)
=9x2+16y2+25+24xy−40y−30x
⇒91x2+84y2−24xy−170x−360y+475=0
Hence, the equation of ellipse is
91x2+84y2−24xy−170x−360y+475=0