Given: e=45,S(−2,3) and equation of directrix is
2x+3y+4=0
Let a point P(x,y), such that
SP=e⋅PM, where PM is perpendicular distance from P(x,y) to directrix
⇒√(x+2)2+(y−3)2=45×∣∣
∣∣2x+3y+4√22+32∣∣
∣∣
⇒√(x+2)2+(y−3)2=45×|2x+3y+4|√13
Squaring on both sides, we get
⇒(x+2)2+(y−3)2=1625×13(2x+3y+4)2
⇒325(x2+y2+4x−6y+13)
=16(2x+3y+4)2
Hence, the equation of ellipse is
325(x2+y2+4x−6y+13)=16(2x+3y+4)2