Given that : e=√3,S(1,1) and equation of directrix is 2x+y−1=0
Let a point be P(x,y), such that
SP=ePM, where PM is perpendicular distance from P(x,y) to directrix
⇒√(x−1)2+(y−1)2=√3×∣∣
∣∣2x+y−3√22+12∣∣
∣∣
⇒√(x−1)2+(y−1)2=√3√5|2x+y−1|
⇒(x−1)2+(y−1)2=35(2x+y−1)2
⇒5(x2−2x+1+y2−2y+1)=3(4x2+y2+1+4xy−2y−4x)
⇒5x2−10x+5y2−10y+10=12x2+3y2+3+12xy−6y−12x
⇒7x2−2y2+12xy−2x+4y−7=0
∴ Equation of hyperbola is
7x2+12xy−2y2−2x+4y−7=0