Given that : e=2,S(1,1) and equation of directrix is 3x+4y+8=0
Let a point be P(x,y), such that
SP=ePM, where PM is perpendicular distance from P(x,y) to directrix
⇒√(x−1)2+(y−1)2=2×∣∣
∣∣3x+4y+8√32+42∣∣
∣∣
⇒√(x−1)2+(y−1)2=25|3x+4y+8|
Squaring both sides, we get
⇒(x−1)2+(y−1)2=425(3x+4y+8)2
⇒25(x2−2x+1+y2−2y+1)=4(9x2+16y2+64+24xy+64y+48x)
⇒25x2−50x+25y2−50y+50=36x2+64y2+256+96xy+256y+192x
⇒11x2+39y2+96xy+242x+306y+206=0
∴ Equation of hyperbola is
11x2+96xy+39y2+242x+306y+206=0