wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of hyperbola whose focus is (1,1), directrix is 3x+4y+8=0 and eccentricity =2

Open in App
Solution

Given that : e=2,S(1,1) and equation of directrix is 3x+4y+8=0

Let a point be P(x,y), such that

SP=ePM, where PM is perpendicular distance from P(x,y) to directrix

(x1)2+(y1)2=2×∣ ∣3x+4y+832+42∣ ∣

(x1)2+(y1)2=25|3x+4y+8|

Squaring both sides, we get
(x1)2+(y1)2=425(3x+4y+8)2
25(x22x+1+y22y+1)=4(9x2+16y2+64+24xy+64y+48x)
25x250x+25y250y+50=36x2+64y2+256+96xy+256y+192x
11x2+39y2+96xy+242x+306y+206=0

Equation of hyperbola is
11x2+96xy+39y2+242x+306y+206=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon