Given that: e=2,S(2,−1) and equation of directrix is 2x+3y−1=0
Let a point be P(x,y), such that
SP=ePM, where PM is perpendicular distance from P(x,y) to directrix
⇒√(x−2)2+(y+1)2=2×∣∣
∣∣2x+3y−1√22+32∣∣
∣∣
⇒√(x−2)2+(y+1)2=2√13|2x+3y−1|
On squaring both sides, we get
⇒(x−2)2+(y+1)2=413(2x+3y−1)2
⇒(x−2)2+(y+1)2=4/13(2x+3y−1)2
⇒13(x2−4x+4+y2+2y+1)=4(4x2+9y2+1+12xy−6y−4x)
⇒13x2−52x+13y2+26y+65=16x2+36y2+4+48xy−24y−16x
⇒3x2+23y2+48xy+36x−50y−61=0
∴ Equation of hyperbola is
3x2+48xy+23y2+36x−50y−61=0