Given that : e=43,S(a,0) and equation of directrix is 2x−y+a=0
Let a point be P(x,y), such that
SP=ePM, where PM is perpendicular distance from P(x,y) to directrix
⇒√(x−a)2+(y−0)2=43×∣∣
∣
∣∣2x−y+a√22+(−1)2∣∣
∣
∣∣
⇒√(x−a)2+y2=43√5|2x−y+a|
⇒(x−a)2+y2=1645(2x−y+a)2
⇒45(x2−2ax+a2+y2)=16(4x2+y2+a2−4xy−2ay+4ax)
⇒45x2−90ax+45a2+45y2=64x2+16y2+16a2−64xy−32ay+64ax
⇒19x2−29y2−64xy+154ax−32ay−29a2=0
∴ Equation of hyperbola is
19x2−64xy−29y2+154ax−32ay−29a2=0