l1:x−12=y−23=z−34:→b1=2^i+3^j+4^kl2:x−23=y−44=z−55:→b2=3^i+4^j+5^k
direction of line of shortest distance is perpendicular to l1 & l2(→b1×→b2)
∴→b1×→b2=∣∣
∣
∣∣^i^j^k234345∣∣
∣
∣∣=^−i+2^j+(−1)^k
Let (x1y1z1)=(2r+1,3r+2,4r+3) be the point of intersection of l1 and line of shortest distance.
Let (x2y2z2)=(3k+2,4k+4,5k+5) be the point of intersection of l2 and line of shortest distance.
∴l:x−(2r+1)−1=y−(3r+2)2=z−(4r+3)−1
(x2y2z2) must satisfy l.
(3k+2)−(2r+1)−1=(4k+4)−(3r+2)2=(5k+5)−(4r+3)−1
∴3k+2−(2r+1)=5k+5−(4r+3)
2k−2r+1=0−−−(i)
∴(4k+4)−(3r+2)=−2(5k−4r+2)
14k−11r+5=0−−−(ii)
Solving (i) and (ii)
k=+16,r=+23
L:x+73−1=y−0.42=z−173−1
Ans: equation of the shortest distance line is : x+73−1=y−0.42=z−173−1