The correct option is C 3√3x−2y=5√3
Given ellipse is:x236+y216=1
Here , a=6, b=4, θ=60∘
Equation of normal in parametric form:
axcosθ−bysinθ=a2−b2
Substituting values of a,b,θ we get;
6xcos60∘−4ysin60∘=36−16
⇒6x12−4y√32=20
⇒12x−8y√3=20
⇒3x−2y√3=5
Multiplying both sides by √3, we get the equation of normal as:
3√3x−2y=5√3
This is the required equation