The correct option is C √6x+6y=5
Given: Hyperbola S≡6x2−4y2=3; Eccentric angle is π6
To Find: Equation of normal
Step - 1: Recall the equation of normal in parametric form.
Step - 2: Find a and b.
Step - 3: Substitute the values and simplify.
We have the hyperbola, 6x2−4y2=3
⇒6x23−4y23=1
⇒x2(1√2)2−y2(√32)=1
Here, a=1√2,b=√32
Equation of normal in parametric form is axsecθ+bytanθ=a2+b2
∴ Equation of normal:
(1√2)xsec(π6)+(√32)ytan(π6)=12+34
⇒(1√2)x(2√3)+(√32)y(1√3)=54
⇒√3x2√2+3y2=54
Multiplying the equation by 4, we get,
⇒√6x+6y=5