Let A(x,y) be the Pt. on the parabola
focus = (2,3) & eqn of directrix =x−4y+3=0
Now let AM be a perpendicular from A on the directrix.
then, we have (SA)2=(AM)2
(x−2)2+(y−3)2=(x−4y+3√12+(−4)2)2
x2−4x+4+y2−6y+9=(x+4y+3)217
17x2+17y2−68x−102y+221=x2+16y2+9−8xy+6x−24y
⇒16x2+y2+8xy−74x−78y+212=0
Which is the required eqn of parabola.
Latus rectum = 2× (length of ⊥ from focus in th directrix)
=2×∣∣
∣∣(2−2×3+3)√12+42∣∣
∣∣
⇒2×∣∣∣−7√1+16∣∣∣⇒+14√17
Latus Rectum =14√17