1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Equation of a Plane Passing through Three Points
Find the equa...
Question
Find the equation of plane passing through points
(
1
,
1
,
−
1
)
(
6
,
4
,
−
5
)
(
−
4
,
−
2
,
3
)
.
Open in App
Solution
Vector equation of a plane passing through three points with position vectors
→
a
,
→
b
,
→
c
is
(
→
r
−
→
a
)
⋅
[
(
→
b
−
→
a
)
×
(
→
c
−
→
a
)
]
=
0
N
o
w
,
t
h
e
p
l
a
n
e
p
a
s
s
e
s
t
h
r
o
u
g
h
t
h
e
p
o
i
n
t
s
A
(
1
,
1
,
−
1
)
→
a
=
1
ˆ
i
+
1
ˆ
j
−
1
ˆ
k
B
(
6
,
4
,
−
5
)
→
b
=
6
ˆ
i
+
4
ˆ
j
−
5
ˆ
k
C
(
−
4
,
−
2
,
3
)
→
c
=
−
4
ˆ
i
−
2
ˆ
j
+
3
ˆ
k
(
→
b
−
→
a
)
=
(
6
ˆ
i
+
4
ˆ
j
−
5
ˆ
k
)
−
(
1
ˆ
i
+
1
ˆ
j
−
1
ˆ
k
)
=
(
6
−
1
)
ˆ
i
+
(
4
−
1
)
ˆ
j
+
(
−
5
−
(
−
1
)
)
ˆ
k
=
5
ˆ
i
+
3
ˆ
j
−
4
ˆ
k
(
→
c
−
→
a
)
=
(
−
4
ˆ
i
−
2
ˆ
j
+
3
ˆ
k
)
−
(
1
ˆ
i
+
1
ˆ
j
−
1
ˆ
k
)
=
(
−
4
−
1
)
ˆ
i
+
(
−
2
−
1
)
ˆ
j
+
(
3
−
(
−
1
)
)
ˆ
k
=
−
5
ˆ
i
−
3
ˆ
j
+
4
ˆ
k
(
→
b
−
→
a
)
×
(
→
c
−
→
a
)
=
∣
∣ ∣ ∣
∣
ˆ
i
ˆ
j
ˆ
k
5
3
−
4
−
5
−
3
4
∣
∣ ∣ ∣
∣
=
−
∣
∣ ∣ ∣
∣
ˆ
i
ˆ
j
ˆ
k
5
3
−
4
5
3
−
4
∣
∣ ∣ ∣
∣
=
→
0
This implies, the three points are collinear.
vector equation of plane is
[
→
r
−
(
ˆ
i
+
ˆ
j
−
ˆ
k
)
]
⋅
→
0
=
0
Since, the above equation is satisfied for all values of
→
r
Therefore, there will be infinite planes passing through he given collinear points.
Suggest Corrections
0
Similar questions
Q.
Find the equations of the planes that passes through
(
1
,
1
,
−
1
)
,
(
6
,
4
,
−
5
)
,
(
−
4
,
−
2
,
3
)
Q.
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).