Equation of planes which intersect two planes
p1+λp2=0
(x+3y+6)+λ(3x−y+4z)=0 ..........(i)
x+3y+6+3λx−λy+4λz=0
x(1+3λ)+y(3−λ)+4λz+6=0
Length of perpendicular draw from (0,0,0) is equal to 1 is given
∴1=6√(1+3λ)2+(3−λ)2+(4λ)2
(1+3λ)2+(3−λ)2+(4λ)2=36 by squaring
1+9λ2+6λ+9+λ2−6λ+16λ2=36
26λ2=36−10
26λ2=26
λ2=2626=1
λ=±1
Putting the value of λ in (i) λ=1
We get
(x+3y+6)+λ(3x−y+4z)=0
x+3y+6+1(3x−y+4z)=0
x+3y+6+3x−y+4z=0
4x+2y+4z+6=0
2x+y+2z+3=0
When λ=−1
(x+3y+6)−1(3x−y+4z)=0
x+3y+6−3x+y−4z=0
−2x+4y−4z=0
x−2y+2z−3=0.