Equation of the line passing through the intersection of the given plane is given by
(x+3y+6)+k(3y−y−4z)=0
(1+3k)x+(3−k)y−4kz+6=0
If the perpendicular to it from (0,0,0) is p, then
p=∣∣
∣
∣∣0+0−0+6√(1+3k)2+(3−k)2+(−4k)2∣∣
∣
∣∣
36=(1+3k)2+(3−k)2+16k2
Solving k=±1
The required planes are
(x+3y+6)±(3x−y−4z)=0
4x+2y−4z+6=0
and −2x+4y+4z+6=0