Find the equation of straight line passing through (-2, -7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Here, (x1, y1)=A (−2, −7)
The equation of any line passing through (−2, −7) is
x−x1cos θ=y−y1sin θ=r
x+2cos θ=y+7sin θ=r
B and C are at distance r and (r + 3)
Thus, coordinates of B and C are (−2+r cos, −7+r sin θ) and (−2 + (r+3) cos θ, −7+(r+3) sin θ)
B lies on 4x+3y=12
⇒ 4(−2+4 cos θ)+3(−7+r sin θ)=12 ...(1)
C lies on 4x+3y=3
⇒ 4(−2+(r+3) cos θ)+3(−7+(r+3) sin θ)=3 ...(2)
Subtracting (i) from (2)
12 cos θ+9 sin θ=−9
⇒ 4cosθ=−3(1−sinθ)
⇒ 16cos2θ=9(1+sin2θ−2 sin θ)
⇒ 16(1−sin2θ)=9(1+sin2θ−2 sin θ)
⇒ 16−16sin2θ=9+9sin2θ−18 sin θ
⇒ 25sin2θ−18sinθ−7=0
⇒ 25sin2θ−25sinθ+7sinθ−7=0
⇒ 25sinθ (sinθ−1)−7(sinθ−1)=0
sinθ=1, sinθ=725
Now, sinθ=1⇒ cosθ=0
∴ x+2=0
and if sinθ=725 then cosθ=2425
∴ x+22425=y+7725
⇒ 7x+24y+182=0
P.Q. The slope of a straight line through A (3, 2) is 34. Find the coordinates of the points on the line that are 5 units away from A:
The slope of the line=34
⇒ tan θ=34
⇒ sin θ=35 and cos θ=45
The coordinates of point that are 5 units away from A are
x−3cos θ=y−3sin θ=±5
or x−345=y−335=±5
5(x−3)4=5(y−3)3=±5
i.e., 5(y−3)4=±5 and 5(y−3)3=±5
∴ x=7 and y=5
x=−1 or y=−1
∴ coordinates of point on the line that are 5 units away from A are (-1, -1) and (7, 5)
P.Q. Find the direction in which a straight line must be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of
√23 from this point.
The equation of line passing through
A (1, 2) and r=√23 is
Let θ be the slope of the line, so, the equation of the line that has slope θ and passes through A (1, 2) is
x−x1cos θ=y−y1sin θ
Coordinates of p are given by
x−1cos θ=y−y1sin θ=r=√23
x−1sin θ=y−2cos θ=√23
⇒ x=√23 sin θ+1 and y=√23 cos θ+2 and p with coordinates
(√23sin θ+1,√23cosθ+2)
lie in x−y=4
∴ √23sin θ+1+√23cos θ+2=±4
√23(sin θ+cos θ)=±1
√23(sin θ√2+cos θ√2)=±1
sin(θ+π4)=±√32
[∵ sin A cos, B+cos A sin B=sin (A+B)]
or θ+π4=±π3
∴ θ=π12 or 5π12
15∘ or 75∘
Hence, the direction of the lines with the positive direction of the x-axis is 15∘ or 75∘
P.Q. In what direction whould a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is
at a distance √63 from the given point.
Let P=(1, 2)
and let AB be the given line
x+y=4 ...(i)
Let the line through P making an angle Q with x axis cuts the line AB at Q at
a distance √23 from P
Then,
Q=(1+√23cos θ, 2−√23 sin θ)
Since Q lies on line (i)
∴ 1+√23 cos θ+2+√23 sin θ=4
⇒ cos θ+sin θ=√32
⇒ 1√2 cos q+1√2 sin θ=√32
⇒ 45∘ cos θ+sin 45∘ sin θ=√32
⇒ cos (θ−45∘)=cos 30∘
⇒ q−45∘=2nπ ± 30∘, n=θ ± 1, ±2
⇒ θ=15∘, 75∘
(taking only values between 0∘ and 180∘)