Curve,
x=asin3t................(1) y=acos3t...............(2)
Now, dydt=a(3cos2t)(−sint)
and, dxdt=a(3sin2t)(cost)
=>dydx=dy/dtdx/dt=−cos2tsin2t.sintcost=−cott.
So, equation of tangent at t, (y−acos3t)=dydx(x−asin3t)
=>y−acos3t=(−cott)x−asin2tcost
=>y+cottx+acost−2acos3t=0
And normal at t,=>(y−acos3t)=−1dydx=(x−asin3t)
=>y−(tant)x−acos3t−asin3ttant=0