Find the equation of tangent and normal to the curve x2+3xy+y2=5 at point (1,1) on it.
Open in App
Solution
x2+3xy+y2=5at(1,1) Taking dydx2x+3y+3xdydx+2ydydx=0dydx(3x+2y)=−(2x+3y)dydx=−(2x+3y)(3x+2y)dydx(1,1)=−(5)5=−1 Equation of tangent (x−1)=−1(y−1)x+y−2=0 Equation of normal (x−1)=1(y−1)x−1=y−1x−y=0