=>y=sin−12x1+x2................(1)
Let the equation of tangent be y=mx+c
=>m=(dydx)atx=√3
=>(dydx)=1√1−(2x1+x2)2.((2x)−1(2x)(1+x2)2+2(1+x)2)
=>dydx at x=√3 =1√1−4(3)1+3.(−4(3)(1+3)2+21+3)
=1√2−416
=−14√2
Tangent =>y=−x4√2+c............(2)
at x=√3, in (1), y=sin−12√31+3=sin−1√32
=>y=π3
Equation (2) passes through (√3,π3), π3=−√34√2+c
So the equation (2) becomes, y=−x4√2+π3+√34√2
=>√2y=−3x+4√2π+3√3.