Assuming the point of contact be (x1,y1).
As it (x1,y1) lies on y=x3+2x−4.
∴y1=x31+2x1−4 ............(1)
Given curve,
y=x3+2x−4
Differentiating the curve w.r.t. x, we get
dydx=3x2+2
⇒ dydx](x1,y1)=3x21+2 [ slope of the tangent at(x1,y1)]
Since the tangent at (x1,y1) is perependicular to the line x+14y+3=0
Therefore, slope of tangnet at x1,y1× slope of line = -1
⇒dydx](x1,y1)×(−114)=−1
⇒(3x21+2)(−114)=−1
⇒x1=±2
Now, when x1=2,y1=(2)3+2(2)−4=8
When x1=−2,y1=(−2)3+2(−2)−4=−16
So, the coordinates of the point of contact are (2,8) and (-2,-16).
Equation of tangent for the coordinates (2,8) is:
y−8=14(x−2)
⇒14x−y−20=0
Equation of tangent for the coordinates (-2,-16) is:
y+16=14(x+2)
⇒14x−y+12=0.