Equation of circle is
x2+y2−8x−12y+15=0
On comparing that,
x2+y2+2gx+2fy+c=0
So,
(g,f)=(−4,−6)
(−g,−f)=(4,6)=(h,k)
Now, it passes through the point (5,4)
So,
Radius=√(4−5)2+(6−4)2
Radius=√1+4
Radius=√5
So, equation of circle is,
(x−h)2+(y−k)2=r2
⇒(x−4)2+(y−6)2=(√5)2
⇒x2+16−8x+y2+36−12y=25
⇒x2+y2−8x−12y+52=25
⇒x2+y2−8x−12y+27=0
Hence,
this is the answer.