Let the equation of circle be (x−h)2+(y−k)2=r2 ____________ (1)
As center is passing through (0,0)
∴(0−h)2+(0−k)2=r2
⇒h2+k2=r2_______ (2)
Also a & b are intercept on coordinates axes
∴ Circle also passes through (a,0) & (0,b)
∴(a−h)2+(0−k)2=r2
But r2=h2+k2
∴a2−2ah+h2+k2=h2+k2
a=2h→h=a2
∴ Also, (0−h)2+(b−k)2=h2+k2
h2+b2+k2−2bk−h2+k2
b=2k⇒k=b/2___________ (3)
Substituting (2) in (1) We get
(x−h)2+(y−k)2=h2+k2 ________________ (4)
Substituting (3) in (4) we get
(x−a/2)2+(y−b/2)2=(a/2)2+(b/2)2
x2−ax+a24+y2−by+b24=a24+b24
⇒x2+y2−ax−by=0