Since C(α,β) be the centre of the circle.
Since the circle passes through the point (2,8)
∴ Radius of the circle=√(α−2)2+(β−8)2
Since the circle touches the lines 4x−3y−24=0 and 4x+3y−42=0
∴∣∣
∣∣4α−3β−24√42+52∣∣
∣∣=∣∣
∣∣4α+3β−42√42+52∣∣
∣∣=√(α−2)2+(β−8)2 ........(1)
Solving them, we get
4α−3β−24=±(4α+3β−42) ........(3)
∴6β=18 or β=3 by taking the positive sign
and 8α=66 or α=668=334 by taking negative sign.
Given |α|≤8⇒−8≤α≤8
∴α≠334
Put β=3 in equations (1) and (3) and equating, we get
(4α−33)2=(α−2)2+25
⇒16α2−264α+1089=25α2+725−100α
⇒9α2+164α−364=0 which is quadratic in α
∴α=−164±√1642−36×−3642×9=−164±√1642+36×36418
=−164±√4000018=−164±20018=2,−1829
But −8≤α≤8 ∴α=2
Now r2=(α−2)2+(3−8)2=(2−2)2+(3−8)2=25 where r is the radius of the circle
Hence the required equation of the required circle is
(x−2)2+(y−3)2=25
x2+y2−4x−6y+4+9−25=0 or x2+y2−4x−6y−12=0