x2+y2+2gx+2fy+c=0.....(1)
Given that the circle passes through the points (3,4),(3,2) and (1,4).
Therefore,
(3)2+(4)2+2g(3)+2f(4)+c=0
⇒9+16+6g+8f+c=0
⇒6g+8f+c+25=0.....(2)
(3)2+(2)2+2g(3)+2f(2)+c=0
⇒9+4+6g+4f+c=0
⇒6g+2f+c+13=0.....(3)
(1)2+(4)2+2g(1)+2f(4)+c=0
⇒1+16+2g+8f+c=0
⇒2g+8f+c+17=0.....(4)
Subtracting equation (3) from (2), we have
(6g+8f+c+25)−(6g+4f+c+13)=0
6g+8f+c+25−6g−4f−c−13=0
⇒f=−124=−3
Now subtracting equation (4) from (2), we have
(6g+8f+c+25)−(2g+8f+c+17)=0
6g+8f+c+25−2g−8f−c−17=0
⇒g=−84=−2
Now substituting the value of g and f in equation (2), we have
6(−2)+8(−3)+c+25=0
−12−24+c+25=0
⇒c=11
Substituting the values of g,f and c in equation (1),
we get
x2+y2+2(−2)x+2(−3)y+(11)=0
x2+y2−4x−6y+11=0
Hence the equation of circle passing through the given points is x2+y2−4x−6y+11.