Chord through A(4,3) and B(3,2) is
x−y−1=0.
The required circle is
(x−4)(x−3)+(y−3)(y−2)Circle on AB as diameter+λ(x−y−1)chord AB=0
or x2+y2−7x−5y+18+λ(x−y−1)=0.....(1)
x2+y2+(λ−7)x−(λ+5)y−(λ−18)=0
centre is (−λ−72,λ+52)
and r2=(λ−72)2+(λ+52)2+(λ−18)=λ2+12
If the line 3x−y−17=0 is a tangent then p=r gives
−3(λ−72)−λ+52−17√9+1=r
or (−2λ−9)2=10r2
or 4λ2+36λ+81=10[λ2+12]
or λ2−36λ−76=0
or (λ−38)(λ+2)=0
or λ=−2,38
Putting the value of λ in (1) the required circles are
x2+y2−9x−3y+20=0
and x2+y2+31x−43y−20=0.