The equation of circle
(x−h)62+(y−k)2=r2...(i)
According to question, circle passes through the point (2,3) and (−1,1)
Thus (2−h)62+(3−k)2=r2
⇒4+h2−4h+9+k2−6k=r2
and (−1−h)2+(1−k)2=r2
⇒1+h2+2h+1+k2−2k=r2
Again h2+k2−4h−6k+12=r2..(ii)
and h2+k2+2h−2k+2−r2..(iii)
Since centre of circle (h,k) lie on line
x−3y−11=0
Thus h−3k−11−0
⇒h−3k−11...(iv)
Subtraction eq (iii) from (ii),
h2+k2−4h−6k+12=r2h2+k2+2h−2k+2=r2− − − + − −−6h−4k+11=0−6h−4k=−116h+4k=11...(iv)
Multiply eq. (iv) by 4 and eq. (v) by 3 and then adding
4h−12k=44
18h+12k=33
22h=77
⇒h=7722
∴h=72
Put the value of h in equation (iv),
72−3k=11
⇒3k=72−11
⇒3k=7−222
⇒3k=−152
⇒k=−152×3
∴K=−52
Put the values of h and k in equation (ii),
(72)2+(−52)2−4×72−6×(−52)+12=r2
⇒494+254−14+15+13=r2
⇒744+14=r2
⇒74+564=r2
⇒r62=1304
⇒r=√1304
Put teh values of h,k and r in equation (i)
(x−72)2+[y−(−52)]2=(√1304)2
⇒(x−72)2+(y+52)2=1304
⇒x2+494−2×x×72+y2+254+2×52×y=1304
⇒x2+y2−7x+5y+494+254=1304
⇒x2+y2−7x+5y+744−1304=0
⇒x2+y2−7x+5y+−564=0
⇒x2+y2−7x+5y+−14=0
Thus, required equation of circle
x2+y2−7x+5y+−14=0