Find the equation of the circle which circumscribes the triangle formed by the lines:
(i) x+y+3=0,x−y+1=0 and x=3
(ii) 2x+y−3=0,x+y−1=0 and 3x+2y−5=0
(iii) x+y=2,3x−4y=6 and x−y=0.
(iv) y=x+2,3y=4x and 2y=3x.
The given equation of lines
(i) x+y=−3 …(i)x−y= …(ii)x=3 …(iii)
Let A, B, C are the point of intersection of lines (i) and (ii), (ii) and (iii) and (i) respectively
∴A=(−2,−l),B(3,4) and C=(3,−6)
Now A circle x2+y2+2gx+2fy+c=0 …(A)
circumscribing the ΔABC
∴ 4+1−4g−2f+c=0 …(iv)9+16+6g+8f+c=0 …(v)9+36+6g−12f+c=0 …(vi)
Solving (iv), (v) and (vi) we get,
g =-3,f = 1, and c = -15
from (A),
The equation of required circle is
x2+y2−6x+2y−15=0
The equation of lines are
2x+y−3=0x+y−1=03x+2y−5=0
The equation of lines can be written as:
2x+y=3 …(i)x+y=1 …(ii)3x+2y=5 …(iii)
Let A, B and C arc the points of intersection of the lines (i) and (ii),
(ii) and (iii) and (iii) and (i) respectively.
∴A=(2,−1)B=(3,−2)C=(1,1)
Let x2+y2+2gx+2fy+c=0
be the circle that circumscribing ΔABC.
∴4+1+4g−2f+c=0 …(iv)9+4+6g−4f+c=0 …(v)1+1+2g+2f+c=0 …(vi)
Solving (iv), (v) and (vi) we get,
g=−132,f=−52c=16
from (A), The required circle is
x2+y2−13x−5y+16=0
(iii) The given equation of lines are
x+y=2 …(i)3x−4y=6 …(ii)x−y=0 …(iii)
Let A, B and C arc the points of intersection of the lines (i) and (ii), (ii) and (iii) and (iii) and (i) respectively.
∴A=(2,0)B=(6,−6)C=(1,1)
Let x2+y2+2gx+2fy+c=0 …(A)
be the circle that circumscribing ΔABC.
∴4+4g+c=0 …(iv)36+36−12g−12f+c=0 …(v)1+I+2g+2f+c=0 …(vi)
Solving (iv), (v) and (vi) we get,\\
g = 2, f = 3 and c = -12
from (A),
The required circle is
x2+y2+4x+6y−12=0
(iv) Given equation of line are
y=x+2 …(i)3y=4x …(ii)2y=3x …(iii)
From Eqs. (i) and (ii),
4x3=x+2⇒4x=3x+6+6⇒x=6
On putting x=6 in Eq. (i), we get
y=8
∴ Point, A = (6, 8)
From Eqs. (i) and (iii),
3x2=x+2⇒3x=2x+4⇒x=4
When, x= 4, then y = 6
∴ Point, B = (4, 6)
From Eqs. (ii) and (iii)
x1=0,y=0
Now, C=0(0,0)
Let the equation of circle is
x2+y2+2gxn+2fy+c=0
Since, the points A (6, 8), B (4, 6) and C (0, 0) lie on this circle. 36+64+12g+16f+c=0
⇒12g+16f+c=−100 …(iv)
and 16+36+8g+12f+c=0
⇒8g+12f+c=−52 …(v)⇒c=0 …(vi)
From Eqs. (iv), (v) and (vi),
12g+16f=−100⇒3g+4f+25=0⇒2g+3f+13=0⇒g52−75=f50−39=19−8⇒g−23=f11=11⇒g=−23,f=11
So, the equation of circle is
x2+y2−46x+22y+0=0⇒x2+y2−46x+22y=0