In ABC:
(i) Let AB represent the line x + y + 3 = 0. ...(1)
Let BC represent the line x − y + 1 = 0. ...(2)
Let CA represent the line x = 3. ...(3)
Intersection point of (1) and (3) is .
Intersection point of (1) and (2) is (−2, −1).
Intersection point of (2) and (3) is (3, 4).
Therefore, the coordinates of A, B and C are , (−2, −1) and (3, 4), respectively.
Let the equation of the circumcircle be .
It passes through A, B and C.
∴
Hence, the required equation of the circumcircle is .
(ii) In ABC:
Let AB represent the line 2x + y − 3 = 0. ...(1)
Let BC represent the line x + y − 1 = 0. ...(2)
Let CA represent the line 3x + 2y − 5 = 0. ...(3)
Intersection point of (1) and (3) is (1, 1).
Intersection point of (1) and (2) is (2, −1).
Intersection point of (2) and (3) is (3, −2).
The coordinates of A, B and C are (1, 1), (2, −1) and (3, −2), respectively.
Let the equation of the circumcircle be .
It passes through A, B and C.
∴
Hence, the required equation of the circumcircle is .
(iii) In ABC:
Let AB represent the line x + y = 2. ...(1)
Let BC represent the line 3x − 4y = 6. ...(2)
Let CA represent the line x − y = 0. ...(3)
Intersection point of (1) and (3) is (1, 1).
Intersection point of (1) and (2) is (2, 0).
Intersection point of (2) and (3) is (−6, −6).
The coordinates of A, B and C are (1, 1), (2, 0) and (−6, −6), respectively.
Let the equation of the circumcircle be .
It passes through A, B and C.
∴
Hence, the required equation of the circumcircle is .