Let us assume that the center of the circle is C(h,k).
Now, C is equidistant from (0,1), (1,0) and (2,1).
∴√(h−0)2+(k−1)2=√(h−1)2+(k−0)2
∴h2+k2−2k+1=h2−2h+1+k2
∴−2k=−2h
∴k=h … (1)
Also, we have ∴√(h−0)2+(k−1)2=√(h−2)2+(k−1)2
∴(h−0)2+(k−1)2=(h−2)2+(k−1)2
∴h2=(h−2)2
∴h2=h2−4h+4
∴4h=4
∴h=1 … (2)
From (1) and (2), (h,k)=(1,1).
Hence, equation of circle with center C and passing through (0,1) is
(x−h)2+(y−k)2=(0−h)2+(1−k)2
∴(x−1)2+(y−1)2=(0−1)2+(1−1)2
∴x2−2x+1+y2−2y+1=1
∴x2+y2−2x−2y+1=0
This is the required equation of circle.