The general equation of the circle is-
x2+y2+2gx+2fy+c=0−eq(1)
where (-g,-f) is the center of the circle
1+4+2g(1)+2f(−2)+c=0
⇒2g−4f+c=−5−eq(2)
16+9+2g(4)+2f(−3)+c=0
⇒25+8g−6f+c=0
8g−6f+c=−25−eq(3)
Now the center of the circle will satisfy the given straight line equation because it lies on it. Hence,
3(−g)+4(−f)=7
3g+4f=−7−eq(4)
Subtracting eq(1) from eq(2)
6g−2f=−20
⇒3g=−10+f−eq(5)
Putting eq(5) in eq(4)
−10+f+4f=−7
⇒5f=3
⇒f=35
Putting the value of f in eq(4), we get
3g=−10+35
⇒3g=−50+35
⇒g=−5315
puttinng the value of f and g in eq(1)
2(−5315)−4(35)+c=−5
⇒−10615−125+c=−5
⇒−106−3615+c=−5
⇒c=−5+14215
⇒c=6815
putting the values of g,f,c in the general equation of the circle, we get the equation of the required circle
x2+y2+2(−5315)x+2(35)y+6815=0
⇒15x2+15y2−106x+30y+68=0