wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of the circle which passes through the points (2, 3) and (4,5) and the centre lies on the straight line y − 4x + 3 = 0. [NCERT EXEMPLAR]

Open in App
Solution

The general equation of the circle is x2 + y2 + 2gx + 2fy + c = 0 where the centre of the circle is (−g, −f)
Now, it is passing through (2, 3)
∴ 13 + 4g + 6f + c = 0 .....(1)
Also, it is passing through (4, 5)
∴ 41 + 8g + 10f + c = 0 .....(2)
g=a2
Now, the centre lies on the straight line y − 4x + 3 = 0
∴ −f + 4g + 3 = 0 .....(3)
g=a2
Solving (1), (2) and (3), we get
g = −2, f = −5 and c = 25
The equation of the circle is given by x2 + y2 − 4x − 10y + 25 = 0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Framing a Linear Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon