Let C is the center of circle with coordinates
C(h,k)Coordinates of A are
A(1,2)Coordinates of point B are B(2,2)
As points A and B lie on circle, AC and BC are radii of circle.
By distance formula,
AC=r=√(h−1)2+(k−2)2
∴r2=(h−1)2+(k−2)2
∴(h−1)2+(k−2)2=1 Equation (1)
Similarly, BC=r=√(h−2)2+(k−2)2
∴r2=(h−2)2+(k−2)2
∴(h−2)2+(k−2)2=1 Equation (2)
Perform Equation (1) - Equation (2),
(h−1)2−(h−2)2=0
∴(h2−2h+1)−(h2−4h+4)=0
∴h2−2h+1−h2+4h−4=0
∴2h−3=0
∴h=32
Put this value in equation (2),
(32−2)2+(k−2)2=1
(−12)2+k2−4k+4=1
14+k2−4k+4=1
k2−4k+134=0
Multiply both sides by 4, we get,
4k2−16k+13=0
∴k=−(−16)±√(−16)2−4×4×132×4
∴k=16±√256−2088
∴k=16±√488
∴k=16±4√38
∴k=4(4±√3)8
∴k=(4±√3)2
∴k=(4+√3)2 and ∴k=(4−√3)2
Thus, there are two centers of circle i.e. C1(32,(4+√3)2) and C1(32,(4−√3)2)
Thus, there are two such circles.