2x−3y+4=03x+4y−5=0
To find eqn of circle passing through (0,0) & centre at point of intersection
⇒2x−3y+4=0 ........ (i)
3x+4y−5=0 ........... (ii)
Multiply 3×(i) & 2×(ii) & Subtract them, now we get.
2(3x+4y−5)=0
3(2x−3y+4)=0
6x+18−10=0
−6x−9+12=0
______________
17y−22=0
∴=2217
on substituting y=2217in (i) we get
2x=3y−4
=3(2217)−4=6617−68
∴x=−117
∴ centre of circle is at (−117,2217)
Since radius of circle = Distance from centre & origin
∴r=√(−117−0)2+(2217−0)
r=√1289+484289
r2=485289
eqn of circle =(x−h)2+(y−k)2=r2
on substituting all values we get
⇒(x+117)2+(y−2217)2=485289