The correct option is
B x2+y2−3x−2y=0Three points on the circle are
:−A≡(0,2),B≡(3,0),C≡(3,2)Let P≡(x,y) be its centre, then |PA|=|PB|=|PC|
⇒√(x−0)2+(y−2)2=√(x−3)2+(y−0)2=√(x−3)2+(y−2)2
⇒√x2+y2+4−4y=√x2+9−6x+y2=√x2+9−6x+y2+4−4y
⇒4−4y=9−6x=9−6x+4−4y
Taking first and third parts of the above equation,
4−4y=9+4−6x−4y⇒6x=9⇒x=96=32
Taking second and third parts of the above equation,
9−6x=9+4−6x−4y⇒4y=4⇒y=1∴P≡(32,1)
So, radius r=PA=√(32)2+(1−2)2=√94+1=√52
Thus, equation of the circle ;_(x−32)2+(y−1)2=(√52)2
⇒x2+y2−3x−2y+1−54+94=0⇒x2+y2−3x−2y=0