The correct option is A 2x−y+1=0 and 2x+y+1=0.
y2=8x∴4a=8 or a=2
Any tangent to the parabola is
y=mx+2/m ... (1)
If it is also a tangent to the hyperbola
x2/1−y2/3=1i.e.a2=1,b2=3, then
c2=a2m2−b2 or 4/m2=1.m2−3.
or m4−3m2−4=0 or (m2−4)(m2+1)=0
∴m=±2. Putting for min (1). we get the tangents as
2x−y+1=0 and 2x+y+1=0.