Let P(x, y, z) be an arbitrary point on the given curve.
Then,
PA+PB=10
⇒√(x−4)2+y2+z2+√(x+4)2+y2+z2=10
⇒√(x+4)2+y2+z2=10−√(x−4)2+y2+z2 ...(i)
⇒(x+4)2+y2+z2=100+(x−4)2+y2+z2−20√(x−4)2+y2+z2 [On squaring both sides of (i)]
16x=100−20√(x−4)2+y2+z2
⇒5√(x−4)2+y2+z2=(25−4x)
⇒25[(x−4)2+y2+z2]=625+16x2−200x
⇒9x2+25y2+25z2−225=0
Hence, the required equation of the curve is
9x2+25y2+25z2−225=0.