Find the equation of curve passing through the origin if the middle point of its normal from any point of the curve to the
x−axis lies on the parabola
2y2=xEquation of normal at point p(x,y) is
y−x=dydx(X−x)
Normal meets at x− axis at Q(X,0)
y−x=dydx(X−x)
X=ydydx+xQ=(ydydx+x,0)
Let middle point of PQ is R which is ⎛⎜
⎜
⎜⎝x+x+ydydx2,y+02⎞⎟
⎟
⎟⎠
=⎛⎜
⎜
⎜⎝2x+ydydx2,y2⎞⎟
⎟
⎟⎠
R lies on parabola 2y2=x
Let y2=t..............(1)
2ydydx=dtt=2x+12dtdxdtdx−2t=−4xIF=e∫(−2)dx=e−2xt(IF)=∫(−4x)(IF)dx+Cte−2x=−4x−2e−2x−∫−4x−2e−2x+Cte−2x=2xe−2x+e−2x+Ct=2x++1+ce2x
From (1)
y2=2x+1+ce2x
If this passes through origin as given in Q
C=−1
Therefore the equation of required parabola is y2=2x+1−e2x