1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of Functions
Find the equa...
Question
Find the equation of the curve passing through the point
(
0
,
π
4
)
whose differential equation is
sin
x
cos
y
d
x
+
cos
x
sin
y
d
y
=
0
.
Open in App
Solution
sin
x
cos
y
d
x
+
cos
x
sin
y
d
y
=
0
⇒
cos
x
sin
y
d
y
=
−
sin
x
cos
y
d
x
⇒
sin
y
cos
y
d
y
=
−
sin
x
cos
x
d
x
Integrate both sides,
∫
sin
y
cos
y
d
y
=
∫
−
sin
x
cos
x
d
x
Let
cos
y
=
u
and
cos
x
=
v
. Then,
−
sin
y
d
y
=
d
u
and
−
sin
x
d
x
=
d
v
⇒
∫
−
d
u
u
=
∫
d
v
v
⇒
−
ln
u
=
ln
v
+
C
⇒
ln
u
+
ln
v
=
c
, where
c
is the constant of integration.
⇒
ln
(
u
v
)
=
c
⇒
u
v
=
k
, where
k
=
e
c
=
constant.
Resubstitute the values for
u
and
v
,
cos
x
cos
y
=
k
This is the general solution of the given differential equation.
This curve passes through
(
0
,
π
4
)
⇒
cos
0
cos
π
4
=
k
⇒
k
=
1
√
2
Hence, the equation of the curve is
cos
x
cos
y
=
1
√
2
Suggest Corrections
0
Similar questions
Q.
Find the equation of the curve passing through the point
whose differential equation is,