Given, the differential equation of the curve passing through the point ( 0, π 4 ) is sinxcosydx+cosxsinydy=0.
Simplify the above equation.
sinxcosydx+cosxsinydy=0 { sinxcosydx+cosxsinydy cosxcosy }=0 ( tanxdx+tanydy )=0
By integrating both sides of the above equation, we get
log( secx )+log( secy )=logC log( secxsecy )=logC { secxsecy }=C (1)
Substitute x=0and y= π 4 in the above equation,
1× 2= C
Substitute the value C= 2 in the equation (1).
secxsecy= 2 secx× 1 cosy = 2 cosy= secx 2
Therefore, the above equation is required equation of curve.