Find the equation of the curve which passes through the point (α,α) and satisfies the differential equation y−xdydx=α(y2+x2dydx).
A
(1−α2)y(1−αy)=(1+α2)x(1−αx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(1+α2)y(1−αy)=(1+α2)x(1+αx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(1−α2)y(1−αy)=(1+α2)x(1+αx)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(1+α2)y(1−αy)=(1+α2)x(1−αx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D(1−α2)y(1−αy)=(1+α2)x(1+αx) The equation can be re-written as y(1−αy)=dydxx(1+αx) ∴dyy(1−αy)=dxx(1+αx) or (1y+α1−αy)dy=(1x−α1+αx)dx Intergrating logy−log(1−αy)=logx−log(1+αx)+logk ∴y1−αy=k.x1+αx It passes through (α,α)∴α1−α2=k.α1+α2∴k=1+α21−α2 ∴(1−α2)y(1−αy)=(1+α2)x(1+αx)