Find the equation of the ellipse whose foci are (4,0) and (-4,0), eccentricity = 1/3.
Let the equation of the required ellipse be
x2a2+y2b2=1 ...(i)
The coordinates of foci are (+ae,0) and (-ae,0)
∴ ae =4
⇒a×13=4
⇒a=12⇒a2=144
Now,
b2=a2(1−e2)
⇒b2=144[1−(13)2]
⇒b2=144[1−19]
⇒b2=144×89
⇒b2=16×8=128
Substituting a2=144 and b2=128 in equation (i), we get
=x2144+y2128=1
⇒116[x29+y28]=1
⇒x29+y28=16
This is the equation of the required ellipse.