Let F be the given focus of ellipse and P(h,k) be a point on the ellipse.
∴ distance FP=√(h−1)2+(k+1)2.
Also, shortest distance of P from directrix = PD=∣∣
∣∣h+k+2√12+12∣∣
∣∣=∣∣∣h+k+22∣∣∣
Now, from definition of eccentricity,
e=FPDP
∴23=√(h−1)2+(k+1)2∣∣∣h+k+22∣∣∣
∴23∣∣∣h+k+22∣∣∣=√(h−1)2+(k+1)2
Squaring both sides,
49(h+k+22)2=(h−1)2+(k+1)2
∴(h+k+2)2=9(h−1)2+9(k+1)2
∴h2+k2+4+2hk+4h+4k=9h2−18h+9+9k2+18k+9
∴8h2+8k2−2hk−22h+14k+14=0
Hence, the required equation of ellipse is 8x2+8y2−2xy−22x+14y+14=0.