Find the equation of the ellipse whose focus is (1,-2), the directrix 3x-2y+5=0 and eccentricity equal to 1/2.
Let P(x,y) be any point on the ellipse whose focus is S(1,-2) and eccentricity e=12.
Let PM be perpendicular from P on the directrix. Then,
SP=ePM
⇒SP=12(PM)
⇒SP2=14(PM)2
⇒4SP2=(PM)2
⇒4[(x−1)2+(y+2)2]=[3x−2y+5√(3)2+(−2)2]2
⇒4[x2+1−2x+y2+4+4y]=(3x−2y+5)2(√13)2
⇒4[x2+y2−2x+4y+5]=(3x−2y+5)213
⇒52[x2+y2−2x+4y+5]=(3x−2y+5)2
⇒52x2+52y2−104x+208y+260=(3x−2y+5)2
⇒52x2+52y2−104x+208y+260=(3x)2+(−2y)2+(5)2+2×3x×(−2y)+2×(−2y)×5+2×5×3x
⇒52x2+52y2−104x+208y+260=9x2+4y2+25−12xy−20y+30x
⇒52x2−9x2+52y2−4y2+12xy−104x−30x+208y+20y+260−25=0
⇒43x2+48y2+12xy−134x+228y+235
=0
This is the required equation of the ellipse.