P1=x−2y+23−3=0
P2=x+y+z−1=0
Let P', be a plane s.f. P2 bisects the
plane P1, then the distance between
P2 from P1 and P', are equal i.e
ax+by+cz+d√a2+b2+c2=x+y+z−1√1+1+1=x+y+z−1√3
Let √a2+b2+c2√3=k ,thus
ax+by+cz+d=k(x+y+z−1)...(⋆)
a−k=1,b−k=−2,c−k=2,d−k=−3
⇒a=1+k,b=k−2,c=k+2,d=k−3
putting this in (⋆) , we get
√(1+k)2+(k−2)2+(k+2)2√3=k⇒(1+k)2+(k−2)2+(k+2)2=3k2
⇒3k2+2k+9=3k2⇒k=−9/2.
⇒a=−72,b=−132,c=−152,d=−152
∴eqn of plane = −72x−132y−152z−152=0
⇒7x+13y+5z+15=0