Here,given.......anylinepassesthroughpoint(1,1,1)so,x−1a=y−1b=z−1candlineintersetthrough:x−12=x−13=x−14Now,determenentmustbepositive:∣∣
∣∣012abc234∣∣
∣∣=0or,∣∣
∣∣abc012234∣∣
∣∣=0⇒−(4a−2c)+2(3a−2b)=0⇒−4a+2c+6a−4b=0⇒2a−4b+2c=0∴a−2b+c=0−−−−−−−−−−−(i)Again,intersectanotherline...........x−(−2)1=x−32=x−(−1)4Now,determenentmustbesatisfiied:∣∣
∣∣−2−13−1−1−1abc124∣∣
∣∣=0⇒(−3)(4b−2c)−2(4a−c)+(−2)(2a−b)=0⇒−12b+6c−8a+2c−4a+2b=0⇒−12a−10b+8c=0⇒6a+5b−4c=0−−−−−−−−−−−(ii)fromequ(i)&(ii),wegettheratio:a3=b10=c17then,therequiredlinewill:x−13=y−110=z−117