Find the equation of the line passing through the points (2, 3) and the point of intersection of the lines 4x−3y=7 and 3x+4y+1=0.
4x-y-5=0
4x−3y=7……(i)3x+4y=−1……(ii)
On multiplying eq (i) by 4 and eq (ii) by 3, we get
16x−12y=28…(iii) 9x+12y=−3––––––––––––––––…(iv)adding 25x=25⇒ x=1
Putting x=1, in equation 4x−3y=7, we get
⇒ 4×1−3y=7⇒ −3y=7−4⇒ −3y=3⇒ y=−1
∴ Point of intersection = (1, -1)
Equation of line passing through (2, 3) and (1, -1) is
y−y1=y2−y1x2−x1(x−x1)⇒ y−3=−1−31−2(x−2)⇒ y−3=4(x−2)⇒ y−3=4x−8⇒4x−y−5=0