We know that equation of line passing through point (x0,y0) with slope m is (y−y0)=m(x−x0)
Given :
(x0,y0)=(2,2√3) and θ=75∘
slope =m=tanθ
∴m=tan(75∘)=√3+1√3−1
Now, required equation is
(y−2√3)=√3+1√3−1(x−2)
⇒(y−2√3)(√3−1)=(√3+1)(x−2)
⇒y(√3−1)−2√3(√3−1)=x(√3+1)−2(√3+1)
⇒y(√3−1)−2√3×√3+2√3=x(√3+1)−2√3−2
⇒y(√3−1)−6+2√3=x(√3+1)−2√3−2
⇒y(√3−1)=x(√3+1)−2√3−2+6−2√3
⇒y(√3−1)=x(√3+1)−4√3+4
⇒y(√3−1)−x(√3+1)=−4√3+4
⇒y(√3−1)−x(√3+1)=4(−√3+1)
Multiply both sides with (−1)
x(√3+1)−y(√3−1)=4(√3−1)
Hence, the rquired equation is x(√3+1)−y(√3−1)=4(√3−1)