Find the equation of the line which passes through the point (3, 4) and the sum of its intercepts on the axes is 14.
x+y−7=0
Given a+b=14,
Coordinates are A=(0,b),B=(a,0)
Since A=(0,b)=(0,14−a)
So equation of AB
y−(14−a)=0−(14−a)(a−0)(x−0)⇒y−14+a=a−14a(x),…(i)
It passes through (3, 4) So,
4−14+a=a−14a×3⇒ a−10=3a−42a⇒ a2−10a−3a+42=0⇒ a2−13a+42=0⇒ (a−7)(a−6)=0
So, a=7 or a=6
Put a=6 equation (i), we get
y−14+a=a−14a(x)⇒ y−14+6=6−146x⇒ y−8=−43x⇒3y−24=−4x⇒ 4x+3y−24=0
Put a=7 equation (i), we get
y−14+a=a−14a(x)⇒ y−14+7=7−147x⇒ y−7=−11x⇒ x+y−7=0