Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15∘.
Here,
p=4 and α=15∘
The equation of line is
x cos α+y sin α=p ...(i)
x cos 15∘+y sin 15∘=4
cos 15∘=cos (45−30)
=cos 45 cos 30+sin 45 sin 30
(∵ cos(θ−Φ)=cos θ cos Φ+sin Φ sinΦ)
=1√2×√32+1√2×12
=√32√2+12√2
=12√2(√3+1)
sin 15=sin (45−30)
sin 45 cos 30 cos 45 sin 30
=1√2×√32−1√2×1√2=12√2(√3−1)
Putting in (1)
x×12√2(√3+1)+y×12√2(√3−1)=4
x(√3+1)+y(√3−1)=8√2