wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of the lines through the point of intersection of the lines x3y+1=0 and 2x+5y9=0 and whose distance from the origin is 5.

Open in App
Solution

The required is

x3y+1+λ(2x+5y9)=0

or,(1+2λ)x+(3+5λ)y+19λ=0

Distance from origin of this line is

∣ ∣(1+2λ)0+(3+5λ)0+19λ(1+2λ)2+(5λ3)2∣ ∣

[usingax1+by1+ca2+b2]

5=19λ1+4λ2+4λ+25λ2+930λ

5=19λ10+29λ226λ

5(10+29λ226λ)=(199λ)2

50+145λ2130λ=1+81λ218λ2

64λ2112λ+49=0

(8λ7)2=0 or λ=78

Required lineis

x3y+1+78(2x+5y9)=0

8x24y+8+14x+35y63=0

22x+11y55=0

2x+y5=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Triangle Construction 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon