Find the equation of the lines through the point of intersection of the lines x−3y+1=0 and 2x+5y−9=0 and whose distance from the origin is √5.
The required is
x−3y+1+λ(2x+5y−9)=0
or,(1+2λ)x+(−3+5λ)y+1−9λ=0
Distance from origin of this line is
∣∣ ∣∣(1+2λ)0+(−3+5λ)0+1−9λ√(1+2λ)2+(5λ−3)2∣∣ ∣∣
[usingax1+by1+c√a2+b2]
√5=∣∣∣1−9λ√1+4λ2+4λ+25λ2+9−30λ∣∣∣
⇒√5=∣∣∣1−9λ√10+29λ2−26λ∣∣∣
⇒5(10+29λ2−26λ)=(19−9λ)2
⇒50+145λ2−130λ=1+81λ2−18λ2
⇒64λ2−112λ+49=0
⇒(8λ−7)2=0 or λ=78
∴ Required lineis
x−3y+1+78(2x+5y−9)=0
⇒8x−24y+8+14x+35y−63=0
⇒22x+11y−55=0
⇒2x+y−5=0