Let the normal be at (x1,y1) to the curve 2y=x2 ∴2y1=x21...(a)
Also dydx=x ∴ slope of normal at (x1,y1)=−1x1.
Equation of normal : y−y1=−1x1(x−x1)...(i)
As (i) passes through (2, 1) so, 1−y1=−1x1(2−x1) ⇒x1y1=2...(ii)
Solving (a) and (ii), we get x1=22/3,y1=21/3
Hence the required equation is y−21/3=−122/3(x−22/3) i.e., x+22/3y=2+22/3.
OR Given f(x)=sin4 x+cos4 x, x∈[0,π2] ⇒f′(x)=4 sin3 x cos x−4 cos3 x sin x
⇒f′(x)=4 sin3 x cos x−4 cos3 x sin x ⇒f′(x)=−4 sin x cos x(cos2 x−sin2 x)
⇒f′(x)=−2 sin 2x cos 2x=−sin 4x
For critical points, f′(x)=−sin 4x=0 ⇒sin 4x=0 ⇒4x=0, ±π, ±2π, ±3π, ±4π,....
∴x=0,π4,π2∈[0,π2]
IntervalSign of f'(x)f(x) is strictly(0,π4)NegativeDecreasing(π4,π2)PositiveIncreasing