Abscissa=x coordinate =2
x2+2y2−4x−6y+8=0 ---(1)
Differentiating both sides with respect to x,
⇒2x+4ydydx−4−6dydx=0
⇒dydx=4−2x4y−6=2−x2y−3= slope of tangent
substituting x=2 in eq(1), we get
4+2y2−8−6y+8=0
⇒2y2−6y+4=0
⇒y2−3y+2=0
⇒(y−1)(y−2)=0⇒ y=1ory=2
case 1 :- y=1(dydx)(2,1)=0−1=0
eq of normal ⇒(y−1)=−10(x−2)⇒x−2=0
⇒x=2
case 2 :- y=2(dydx)2,2=01=0
eq of normal ⇒(y−2)=−10(x−2)⇒(x−2)=0
⇒x=2
Therefore, the equation of normal isx=2.